
Group Equivariant Deep Learning
Lecture 1 - Regular group convolutions 
     Lecture 1.4 - SE(2) Equivariant NN Example | With histopathology images 

      Visual example for roto-translation equivariance ( SE(2) )

Erik Bekkers, Amsterdam Machine Learning Lab, University of Amsterdam 
This mini-course serves as a module with the UvA Master AI course Deep Learning 2 https://uvadl2c.github.io/ 

https://uvadl2c.github.io/
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Max-pooling over rotations 
guarantees rotation invariance
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Bekkers & Lafarge et al. MICCAI 2018
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G-CNNs without data-augmentation  
outperform 
CNNs with data-augmentation

G-CNNs guarantee 
geometric stability. 
They are robust to 
input distortions, 
regular CNNs aren’t…

Bekkers & Lafarge et al. MICCAI 2018 Lafarge et al. MedIA 2020

G-CNNs are more sample efficient! 
G-CNNs (25% data) > CNNs (100% data)

10%

50%
25%

100%

75%

Lafarge et al. ArXiv/MedIA 2020



Experiments in medical image analysis
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Bekkers & Lafarge et al. MICCAI 2018



From rotation to scale equivariant CNNs
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Bekkers ICLR 2020

Translation +                              G-CNNs

2D CNN

scale equivariant

2D CNN with 
rescaled input
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Romero, Bekkers, Tomczak, Hoogeboom  
Wavelet Networks: Scale Equivariant Learning 
From Raw Waveforms - arXiv:2006.05259

From rotation to scale equivariant CNNs
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• The right inductive bias: guaranteed equivariance  
(no loss of information)


• Performance gains that can’t be obtained by data-augmentation alone 
(both local and global equivariance/invariance)


• Increased sample efficiency  
(increased weight sharing, no geometric augmentation necessary)

G-CNNs rule!
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